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An Optimization Approach to the
Frequency-Domain Inverse Problem for a
Nonuniform LCRG Transmission Line

Martin Norgren and Sailing He

Abstract—The inverse problem for a nonuniform LCRG transmission
line is considered in the frequency domain. Imbedding equations for the
reflection and transmission coefficients are derived through the concept
of wave-splitting. An optimization approach is applied to reconstruct the
line parameters as functions of the position using band-limited reflection
and/or transmission data. Exact and explicit expressions for the gradients
are derived, and the reconstruction algorithm (based upon a conjugate
gradient method) is tested with both clean and noisy data. The problem
of the nonuniqueness is also discussed.

I. INTRODUCTION

Time-domain inverse probiems for nonuniform transmission lines
have been studied extensively recently by wave-splitting approaches
[11, [2]. However, in many situations such as parameter reconstruction
with band-limited data, design of filters, etc., it is of important to study
the corresponding inverse problem in the frequency domain. The
recent development and application of various optimization methods
has proved their usefulness as efficient tools for obtaining various
designs [3]-{5]. In the present paper, we apply an optimization
approach to the reconstruction of the line parameters using the band-
limited reflection and/or transmission data in the frequency-domain.

In the present paper, the direct solver is obtained by solving the
imbedding equations for the reflection and transmission coefficients,
which are derived through the concept of wave-splitting [6], [7]. To
apply an optimization approach to an inverse problem, one introduces
a suitable objective functional first, and then computes the gradient of
this functional. In the present paper, we derive an exact and explicit
expression for the gradient by introducing some auxiliary functions.
The line parameters are then reconstructed by an iterative algorithm
(based on the conjugate gradient method).

II. PROBLEM FORMULATION AND THE DIRECT SOLVER

Consider a nonuniform transmission line occupying the region & €
[0,1] where the parameters L (the inductance), C (the capacitance),
R (the resistance) and G (the shunt conductance) varies with the
position z. The telegrapher’s equations for the voltage V (z;w) and
current I(x;w) with harmonic time dependence exp(jwt) are

wlr)= e lie T T]=0T) o

The nonuniform line is excited at « = 0 from a uniform (not
necessarily lossless) transmission line with a characteristic impedance
Zy, and is terminated with a load impedance Z; at « = [. Note
that both Zy and Z; may be in general frequency-dependent. The
inverse problem is to determine one or several of the line parameters
in the region [0,!] from the reflection and/or transmission data in a
certain frequency band (in all the numerical examples in the present
paper, we use scattering data in a microwave frequency band). To
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enhance the input information for reconstruction, we may also use
the reflection data at * = { when the line is excited at x = [ (right-
sided excitation). However, to simplify the notation we will only give
the formulas and their derivations for the left-sided excitation, since
the formalism is completely analogous for the right-sided excitation.

To apply an optimization approach, one needs a direct solver for
the direct problem to calculate the gradient at each iteration. In this
section we derive the imbedding equations for the reflection and
transmission coefficients through the concept of wave-splitting, and
use them as the direct solver. We use the following wave-splitting [7]

[“;-_F] (2;w) =%E ——ZZOOJ [‘1{] (z5w)
| ET()F;] (23 0). @)

Note that VT (x;w) and V™ (a;w) are the incident and reflected
voltages, respectively, in the homogeneous region x < 0. Using (1)
and (2), one obtains the following system of equations for the split
voltages

d [v+ VY] [-a -b][V*
L)mom ][ ] o

a=1[jw(CZ+LZ;") + (GZ + RZs )], @)
b=21ljw(C% — LZ; ")+ (GZ - RZ;")). )

where

The reflection and transmission coefficients for the nonuniform
transmission line can be determined by an invariant imbedding
method. In this method one considers an imbedding geometry, i.e.,
a subline [z,1] of the original line [0,!], and assumes that the
subline is temporarily terminated at the left side with a uniform line
with a charactaristic impedance Zy. For this imbedding geometry,
the reflection coefficient (denoted r(wz;w)) and the transmission
coefficient (denoted #(x;w)) are defined as follows

Vi {zyw) =r(a; w)V+(w; w). 6)

V(liw) =tz w)V+(1'; w). 7N

From the above definitions one sees that 7(0;w),#(0;w) are the
physical reflection and transmission coefficients, respectively, for

the original nonuniform line. From (3) and (6), one can obtain the
following imbedding equation for r(z; w)

ir:2ar+b(1+r2) ®)
dx
together with the boundary condition
\_ZL -2
T(l’w) - ZL + ZO * (9)

By integrating (8) in the —z direction (starting from 2 = ), one
can obtain the reflection coefficient for the original nonuniform line,
i.e. r(0;w). Similarly, one can obtain the following linear imbedding
equation for #(z;w),

d
Te t=(a+0br)t (10)
together with the following boundary condition
271,
tliw)= 5———. 1
() = =2 (11)
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III. AN OPTIMIZATION APPROACH

Introduce a four-element parameter vector p = (L.C,R,G)”
(the superscript T denotes the transposition). Define an objective
functional as follows:

Wmax

Ty = D we(@)r(0;w) = rm(w)?

+ w (W) |H0; w) — e (w)[? (12)

where r,(w),tm(w) are the measured reflection and transmission
coefficients, respectively, and w,(w),w,(w) are weighting functions
(nonnegative) describing the weight of using the reflection and trans-
mission data at different frequency points. In the above definition, the
summation is performed over discrete frequency points in a certain
frequency band [Wmin, Wmax]. Note that one important reason for
choosing the Ly-norm in the present paper is that this choice makes
it possible to derive exact expressions for the gradient of J(p) Gf
one computes the gradient by numerical perturbations, then L;-norm
is efficient for use [4], however, the computation will be one order
slower than the one using the present analytical gradient, see Section
4.2 below).

A. Explicit Expression for the Gradient

Let 7 = r(a;p + ép) and t = t{x;p + 6p) be the solutions to
(8)-(11) with the parameter vector p + 6p. Then 6r = 7 — r and
§t =t — ¢ satisfy the following system of equations and boundary

conditions:
d [ér| [2(a+br) 0 or
dx |6t bt a-+br||bt
_ [2r6a + (1 +7%)8b
= [ RS ECO8 a3)
br(ly=6t(1) =0 (14)
where

ba = a(p + 6p) — a(p),6b = b(p + 6p) — b(p)

and

o(dp)
EL g
ll6p]|

(]| || denotes the Ly norm, i.e., ||f(z)|| = {J¢ |f(2)|? dx}'/?).
The corresponding increment of the functional J(p) can then be
written as follows:

8J(p) =J(p + 8p) = J(p)
=2%Re i" {w, [r(0;w) — r (W)} 67(0; w)

W=Wo iy

+ wet(0; w) — tin (W)]768(0; w) } + 0(8p)

lim
[|8pll—0

15)

where the superscript * denotes the complex conjugate, and Re
denotes the real part. Introduce a pair of auxiliary functions U (x; w)
and W (x;w) which satisfy the following system of equations and
boundary conditions

a,|U 2(a + br) bt vl _

%[W]-'—[ 0 a-}-br][W}—O (16)
U(0w) = wr(w)[r(0;w) — o (w)]", an
W(0; w) = we(w)[EH0;w) — tm(w)]". (18)
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The increment in the functional can thus be written as

Wmax

8J(p)=2Re Y {U(0;w)ér(0;w)

W=Wmin

+ W(0;w)6t(0; w)} 4 o(8p).
From (13) and (16), one has

19

Ed— (Usr + W6t) = (2rba + (1 4+ r2)60)U
x

+ (6a + réb)tW + o(6p) (20)

which gives (cf. the boundary condition (14))
U(0; w)br(0; w) + W(0; w)st(0;w)

l
:_/ {(2réa+ (1 +r?)6b)U
0

+ (6a + r8b)tW Y} dz + o(6p). (1)

From (10) and (16) it immediately follows that (d/dx)(tW) = 0,
ie., t{x;w)W(z;w) = K(w), where [cf. (18)]

K(w) = we(w)[E(0; w) = tm ()] (05 w). (22)

Therefore, one can write the increment of the functional as

Wmax

>

@W=Wmin

{
5 (p) =—2/ dz Re
0

{[2réa + (14 r*)6b)U + (6a + réb) K} + o(6p).
(23)

If all the line parameters are nondispersive, one can rewrite (23) in
an inner product form

1
6J(p) = / g" - 8p de + o(5p)
0

= <gL7 6L> + <QC, 6(:')

+{gr, 6 R) + {ga, 6G) + o(6p) (24)

where g(x) is the gradient of the objective functional. Using (4)
and (5) to express the increments da and b in (23) in terms of the
parameter increments, one can identify the gradients as

“max

gr(z) =—Re Z jw[Zo(w)]_1

W=%min

AK(W)(1 = r(z;w)) — (1 —r(2;w))*Ulx;w)},

(25)
gol(x) =—Re ix JwZo(w)
AR (@) (1 +r(z5w) + (L + r(z3w)Ulriw)},
(26)

gr(@) =—Re S [Zol)]™

W=Wian

A (@)L= r(z;w) — (1 = r(230)20 (2;0)},

27
ga(r) =—Re Y Zo(w)
AR (WYL + r(zyw)) 4+ (1 + (2 w) Uz w)}.
(28)

Note that if the scattering data for right-sided excitation, as well
as the the scattering data for left-sided excitation, are used in an
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inverse problem, an analogous term should be added in the definition
(12) of the objective functional. Consequently in that case the above
expressions for the gradients will be modified with additional terms
[which are similar to the righthand side expressions of (25)-(28)].

IV. NUMERICAL RECONSTRUCTION

A. Reconstruction of One Parameter from One-Sided Reflection Data

Example 1: In this numerical example we consider a transmission
line with a piecewise constant conductance as shown by the solid
line in Fig. 1(a) (the length of the line is ! = 0.2 m). The other
three parameters are constant with values of L = 0.50 pH/m,C =
50 pF/m and R = 0 Q/m. The nonuniform line is terminated
at x = 0 with a uniform line with a characteristic impedance
Zo = 50 Q. The load end (at x = 0.2 m) is left open, i.e. Z; = co.
For a line with piecewise constant parameters, one can easily obtain
an explicit solution for the reflection coefficient by using recursively
the following formula [11]

Z1oad + Zchar tanh(yd)

L =
Zchar + Zload tanh('yd)

(29

char

for each subportion of the line, starting at = {. In (29)

7 =V(R+jwL)(@ + jwC),
Zepar = /(R + jwLl)/(G+ jwC)

d is the length of the subportion, and Z;, is the input impedance
of the subportion when its load impedance is Zioaa. When Zig|;=o
is calculated, the reflection coefficient can be obtained by rm(w) =
[Zinle=0 = Z0]/[Zin|e=0 + Zo]. The calculated reflection coefficient
Tm{w) in the frequency band f € [10 MHz, 10 GHz] is shown
in Fig. 1(b), and will be used as the measured reflection data for
the inverse problem in this example. Since the input data r.,(w)
is calculated in a way that is different from the direct solver, the
numerical “marching back effect” can be avoided when solving the
inverse problem. 201 frequency points are used with a logarithmic
spacing in the microwave frequency band f € [10 MHz, 10 GHz],
and 401 grid-points are used in « € [0,{]. In this example we
choose the weighting function for the reflection data as wr(w) =
100~(/“ms)” | where wiay = 2 - 10° s~ (see the dotted line
in Fig. 1(b); w¢(w) = 0, i.e., no transmission data is used). The
dashed line in Fig. 1(a) is the reconstruction after 150 iterations (the
starting guess is identically zero). To test the stability of the algorithm,
Gaussian noise with a standard deviation ¢ = 0.05 - max |rm(w =
27 f)| is added on both the real and the imaginary parts of 7., (w)
[see the dashed lines in Fig. 1(b)]. The dotted line in Fig. 1(a) is
the corresponding reconstruction using the noisy reflection data. The
influence of noise is clearly visible around » = 0.16 m where
the parameter has a large discontinuity. Nevertheless, one sees from
this figure that the reconstruction algorithm is reasonably stable (the
reconstruction algorithm is more stable if the parameter has a smooth
continuous profile). One may reduce the sensitivity of the algorithm
to the noise in the reconstruction of a discontinuous parameter by
certain type of reguiarization (e.g., Tikhonov type [9]).

In the case of reconstructing one parameter, we found that any
of the parameters L, C, R and G can be successfully reconstructed
from one-sided reflection data. If two-sided reflection data are used,
the speed of convergence can be increased significantly. The inclu-
sion of transmission data does not give any improvement of the
reconstruction (see the Section IV-D below).
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Fig. 1. (a) Reconstruction of the shunt conductance G(z). (b) The reflection
coefficient.

B. Reconstruction of Two Parameters from Two-Sided Reflection Data

Our numerical experiments indicate that using only one-sided
excitation we cannot obtain a good simultaneous reconstruction of
two parameters (the other two are assumed to be known) with
the optimization approach. However, when two-sided reflection data
are used, we can reconstruct two parameters simultaneously. The
reconstruction of a reactive parameter (L or C') together with a
dissipative parameter (R or () appears to be successful with a fast
convergence. Reconstruction of the two dissipative parameters, R and
G, is also successful. In the case of reconstructing the two reactive
parameters L and C, the reconstruction is successful (however, with
a slow convergence) if the nonuniform line is lossy. If R = G =0,
unsuccessful reconstruction readily occurs, which is consistent with
a time-domain numerical experiment given in [2].

Example 2-A Dispersive Case: The telegrapher’s equations (1)
are derived with the assumption that the wave in the transmission
line is (or approximately is) a TEM-wave, which is true only for the
case when the conductivity o. of the conductors is much higher than
the conductivity ¢ of the material between the conductors. In such
a case, the series resistance R at high frequencies is proportional
to the real part of the surface impedance Zs, which is given by
Zs = (1 + j)y/wpe/20 (uc is the permeability of the conductors,
see [10]). The imaginary part of Z, is due to an internal inductance
L,. In view of this physical background we consider a dispersive
case for which R in the telegrapher’s equations (1) is replaced with
the following quantity

R(z,w) + jwL,(z,w) = (1+j)Q(2)y/w &)
where Q(z) is proportional to \/pc(x)/oc(x) [11]. Consequently,
the expression (27) for the gradient gr(>) should be replaced with
the following expression for the gradient with respect to the function

Q(z)

go(@)=-Re > (14 j)vVwZ; (w)

W=Wmin

AK (@) = r{z;w)) — (1 — r(0;w) Uz w)}. @Bl
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As a numerical example, we choose the length of the nonuniform
line as I = 0.2 m. The nonuniform dispersive line is always excited
from a 50 Q uniform LC'-line and kept open at the other end (i.e.,
the load impedance is Z; = o0), for both cases of the left- and
right-sided reflection. The line parameters are chosen as shown by
the solid lines in Figs. 2—4. The number of gridpoints in = is 101,
and 30 frequency points are used over the frequency band f €
[50 MHz, 1.5 GHz| with a linear spacing. The measured reflection
coefficient 7., (w) is calculated by solving the imbedding equation (8)
together with the boundary condition (9). We choose the starting guess
of the line parameters as L = 0.25 pH/m,C = 100 pF/m, R = 0,
and G = 0.

The dashed lines in Fig. 2 are the simultaneous reconstruction of
L and R (at the frequency 500 MHz; note that the reconstruction
is carried out for the parameter pairs L(z) and Q(z), although
the reconstruct result is shown for L and R = @+/w in Fig. 2)
after 60 iterations. We have also compared the CPU times and the
accuracy between the reconstructions obtained with and without the
analytical gradients for this example. When an analytical gradient is
not available, one can calculate the gradient numerically through the
following series of step functions

_JYL raaLz<La,
Yu(x) = {0, otherwise

where z,,7 = 1,2,---, N, are the discretized positions. Assume
that P(z) = 2, P, (x)(P(x) is a parameter to be reconstructed),
and the corresponding gradient g(z) = ¥. g¢.¢.(z), then one can
calculate the coefficient g, numerically by a small perturbation as
shown at the bottom of the page where € is a small quantum. In
the present reconstruction algorithm, the computation time is mainly
consumed by calling the direct solver (i.e., solving the imbedding
equations for r and ¢), and the auxiliary direct solver (i.e., solving
the differential equations for the auxiliary functions) which takes a
roughly equal time as the direct solver. To calculate the gradient, one
has to call the direct solver N times when the numerical perturbation
is used, while using the present analytical expression one only needs
to call the direct solver and the auxiliary direct solver once. Therefore,
the ratio of the computation times for the gradient between with and
without the analytical expression is about 2/N. In fact the ratio of
the overall computation time for the reconstruction (if same number
of iterations is required) between with and without the analytical
gradients is about 2 +n,/n, N 4+ 1+ n,, where n, is the number of
the parameters to be reconstructed (in a two-parameter reconstruction
case, n, = 2}, and n, is the average number of steps in the line search
within each iteration (n, = 2 if an optimal line search program is
used). This has been verified numerically. When N = 101, and
the number of frequency points is 20, the time for calculating the
gradient is about six seconds when the analytical expressions are
used, but is ten minutes when a small numerical perturbation is
used (the programs are run on a Macintosh computer of MC68040
type). The overall computation time for the reconstruction (after 18
iterations) is about seven minutes when the analytical gradients are
used, while it takes three hours and twenty minutes when the gradients
are calculated by small numerical perturbation (with same number of
iterations; the reconstruction result is certainly worse than the one
obtained with the analytical gradients). This is consistent with the
observed value n, = 5.6 (we have not used an optimal line search
program in our reconstruction code; the difference in overall CPU
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Fig. 2. Simultaneous reconstruction of the inductance L and the resistance
R (dispersive).

times will be more significant if an optimal line search program is
used).

The simultaneous reconstruction of R (at the frequency 500 MHz)
and G using two-sided reflection data is shown by the dashed lines
in Fig. 3 after 100 iterations. The simultancous reconstruction of L
and C is presented in Fig. 4 after 100 iterations. The dashed lines
in Fig. 4 give the simultaneous reconstruction when the nonuniform
line is lossy (with R and G as shown by the solid lines in Fig. 3),
while the dotted lines are the corresponding reconstruction when the
nonuniform line is lossless (i.e., R = G = 0). The reconstruction
is reasonably good in the lossy case, but fails in the lossless case.
Numerical experiments indicated that in the case of reconstructing L
and C when the line is lossless, the failure lies in the reconstruction
of the wave-front velocity (LC)*I/ % (the reconstruction of the
characteristic impedance (L/C')'/? is still reliable).

C. Reconstruction of More Than Two Parameter

For simultaneous reconstruction of three parameters, we examined
the simultaneous reconstruction of G, R. and one of L and C. which
is expected to be the easiest case. Successful reconstruction using
two-sided reflection data can be achieved only when the starting
guess of the line parameters is close to their true parameter profiles
(otherwise the reconstruction readily fails). Numerical experiments
also show that using several different values for the load impedance
Zy, does not give any improvement in the reconstruction.

D. The Use of Transmission Data

The solution to the inverse problem of reconstructing any line
parameter using only transmission data is in general not unique. For
example, if the load impedance is equal to the impedance of the
terminated uniform line, i.e., Z;, = Zo, it can be shown from two-
port theory that it is impossible to distinguish a parameter profile p(z)
from its center-image profile p({ — x), when only transmission data is
used (i.e., the two profiles generate the same transmission data). Even

_JU{Po P, Pt Pa)) = J((Po, Py By Pr))

g =~

€
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Fig. 3. Simultaneous reconstruction of the resistance R (dispersive) and the
conductance G.

0.52
AY -

T 0SB T e T, A

0.48 1
2 0.46 . ]
2
§0.44 ) .
2042 e
g — True profile

0.4 -- Reconstruction (lossy case)
038 - Reconstruction (losslesscase)
-0 0.05 0.1 0.15 0.2
Position x (m)

180 -
g 160f
i3
140t
8
v A e
3 — True profile e .
5‘ 100 -- Reconstruction (lossy case)

«« Reconstruction (lossless case)

0 0.05 0.1 0.15 0.2
Position x (m)

Fig. 4. Simultaneous reconstruction of the inductance L and the capacitance
C.

when the solution to the inverse problem is unique, the reconstruction
may not be achieved due to the existence of local minima.

In the previous subsections, we used only reflection data in the
numerical reconstruction, and we never came across a case in
which the reconstruction was trapped by a local minimum, i.e., it
appears that the objective functional, defined by (12) with w; = 0,
is convex in a very large area centered at the true profile. One
may like to include the transmission data to make full use of the
available information. However, our numerical experiments show that
including the transmission data will introduce local minima, and thus
it is better not to use the transmission data at all in the present
optimization approach.

V. CONCLUSION

In the present paper, we have described an optimization approach to
the frequency-domain inverse problem for a nonuniform LC RG line.
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Imbedding equations for the reflection and transmission coefficients
have been given, and the exact and explicit expressions for the
gradients have been derived. The reconstruction algorithm have
been tested with both clean and noisy data. Numerical results have
shown that any single parameter can be reconstructed from one-sided
reflection data, and various pairs of parameters can be reconstructed
simultaneously from two-sided reflection data. Several other aspects
have been discussed, including simultaneous reconstruction of more
than two parameters, and the use of the transmission data.
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