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An Optimization Approach to the

Frequency-Domain Inverse Problem for a

Nonuniform LCRG Transmission Line

Martin Norgren and Sailing He

Abstract-The inverse problem for a nonuniform LCRG transmission

line is considered in the frequency domain. Imbedding equations for the

reflection and transmission coefficients are derived through the concept
of wave-sptitting. An optimization approach is applied to reconstruct the

line parameters as functions of the position using band-limited reflection
and/or transmission data. Exact and expticit expressions for the gradients
are derived, and the reconstruction algorithm (based upon a conjugate
gradient method) is tested with both clean and noisy data. The problem
of the nonuniqueness is also dkcussed.

I. INTRODUCTION

Time-domain inverse problems for nonuniform transmission lines

have been studied extensively recently by wave-splitting approaches

[1], [2]. However, in many situations such as parameter reconstruction

with band-limited data, design of filters, etc., it is of important to study

the corresponding inverse problem in the frequency domain. The

recent development and application of various optimization methods

has proved their usefulness as efficient tools for obtaining various

designs [3]–[5]. In the present paper, we apply an optimization

approach to the reconstruction of the line parameters using the band-

Iimited reflection andlor transmission data in the frequency-domain.

In the present paper, the direct solver is obtained by solving the

imbedding equations for the reflection and transmission coefficients,

which are derived through the concept of wave-splitting [6], [7]. To

apply an optimization approach to an inverse problem, one introduces

a suitable objective functional first, and then computes the gradient of

this functional. In the present paper, we derive an exact and explicit

expression for the gradient by introducing some auxiliary functions.

The line parameters are then reconstructed by an iterative algorithm

(based on the conjugate gradient method).

II. PROBLEM FORMULATION AND TRE DIRECT SOLVER

Consider a nonuniform transmission line occupying the region x c

[0, 1] where the parameters L (the inductance), C (the capacitance),

R (the resistance) and G (the 8hunt conductance) varies with the

pogition z. The telegrapher’s equations for the voltage V(z; w) and

current 1(z; w ) with harmonic time dependence exp (j wt) are

[HdV= o
&I –G – jwc -R~’’wl=DM ‘1)

The nonuniform line is excited at z = O from a uniform (not

necessarily lossless) transmission line with a characteristic impedance

ZO, and is terminated with a load impedance ZL at z = 1. Note

that both ZO and ZL may be in general frequency-dependent. The

inverse problem is to determine one or several of the line parameters

in the region [0, 1] from the reflection aud/or transmission data in a

certain frequency band (in all the numerical examples in the present

paper, we use scattering data in a microwave frequency band). To
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enhance the input information for reconstruction, we may also use

the reflection data at x = 1 when the line is excited at r = 1 (right-

sided excitation). However, to simplify the notation we will only give

the formulas and their derivations for the left-sided excitation, since

the formrdism is completely analogous for the right-sided excitation.

To apply an optimization approach, one needs a direct solver for

the direct problem to calculate the gradient at each iteration. In this

section we derive the imbedding equations for the reflection and

transmission coefficients through the concept of wave-splitting, and

use them as the direct solver. We use the following wave-splitting [7]

Note that V+ (z; w ) and V– (z; w) are the incident and reflected

voltages, respectively, in the homogeneous region z <0. Using (1)

and (2), one obtains the following system of equations for the split

voltagei

[1d V+

z v- = TODT;
‘Fwa :blFTl‘3)

where

a = ~[jw(CZO + LZ~l) + (GZO + Rz~l)], (4)

b = $[jti(czo – LZ~’) + (GZO – RZ~l)]. (5)

The reflection and transmission coefficients for the nonuniform

transmission line can be determined by an invariant imbedding

method, In this method one considers an imbedding geometry, i.e.,

a subline [T, 1] of the original line [0, t], and assumes that the

subline is temporarily terminated at the left side with a uniform line

with a characteristic impedance ZO. For this imbedding geometry,

the reflection coefficient (denoted r (z; w) ) and the transmission

coefficient (denoted t (z; UJ)) are defined as follows

V-(Z; w) = r’(r; UJ)v+(x;Ld), (6)

V(l; cd)=f(.c;Cd)v+(r;w). (7)

From the above definitions one sees that r (O; w ), t(O; w ) are the

physical reflection and transmission coefficients, respectively, for

the original nonuniform line. From (3) and (6), one can obtain the

following imbedding equation for T(Z; w)

together with the boundary condition

(8)

(9)

By integrating (8) in the –x direction (starting from z = 1), one

can obtain the reflection coefficient for the original nonuniform line,

i.e. T(O; w ). Similarly, one can obtain the following linear imbedding

equation for t(z; w),

~t=(a+br)t

together with the following boundary condition

(lo)

(11)
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111. AN OPTIMIZATION APPROACH The increment in the functional can thus be written as

Introduce a four-element parameter vector p = (L, C, R, G)T

(the superscript T denotes the transposition). Define an objective

functional as follows:

@m.x

J(P) = ~ Wr(u)lr-(o; 1-d)– r-m(o)lz

~=wm,n

+ W,(w) lt(o; w) – tm(cd)lz (12)

where ~~ (u ), t ~ (w ) are the measured reflection and transmission

coefficients, respectively, and w,(U), wt (u ) are weighting functions

(nonnegative) describing the weight of using the reflection and trans-

mission data at different frequency points. In the above definition, the

summation is performed over discrete frequency points in a certain

frequency band [w~,n, w~ax]. Note that one important reason for

choosing the -L2-norm in the present paper is that this choice makes

it possible to derive exact expressions for the gradient of J(p) (if

one computes the gradient by numerical perturbations, then LI -norm

is efficient for use [4], however, the computation will be one order

slower than the one using the present analytical gradient, see Section

4.2 below).

A. Explicit Expression for the Gradient

Let F = r(x; p + tip) and ~ = t(T; p + 6p) be the solutions to

(8)-(1 1) with the parameter vector p + c5p. Then br = 7 – r and

tit E ; – t satisfy the following system of equations and boundary

conditions:

-[1[d & 1[12(a + L%) O fST

dx 6t – bt a+bT 6t

[

_ 2r6a+ (1 +r-2)6b
—

t(~a + ~6b) 1
+ O(fip), (13)

(57’(1) = N(l) = o (14)

where

6a = a(p + bp) – a(p), bb = b(p + bp) – b(p)

and

O(bp) = o

IIA5.O Ilap[l

(1I II denotes the -b now i.% llf(~)ll = {d If($)lz d~}’’2).
The corresponding increment of the functional J(p) can then be

written as follows:

&7(p) = J(p + bp) – J(p)

urnax

= 2Re ~ {wr[r(O;o) – rm(ti)]*6r(O; U)

“J=@mm
+ ‘wt[t(o; w) – tm(ti)]”bt(o; u)} + O(l$p) (15)

where the superscript * denotes the complex conjugate, and !l?e

denotes the real part. Introduce a pair of auxiliary functions U ( r; ti )

and W (L; u) which satisfy the following system of equations and

boundary conditions

[1[d cl

1[ 1+2(a+br) bt L’

Z’w o =0
a+br W

(16)

U(O; LJ) =Wr(u)[r(o;u) – Tm(ti)]”, (17)

TV(O;w) = Wt(ti)[t(o;ul) – tin(w)]”. (18)

~max

6J(p) = 2Re ~ {/7( O;w)&(O; w)

(19)

From (13) and (16),

“J=~rm.
+ W(o;cd)c$t(o;w)} +0((11).

one has

Wtit) =(2r8a + (1+ r2)6b)U

+ (ba + rbb)t~’ + o(tip) (20)

which gives (cf. the boundary condition (14))

U(o;L4J)&(o;LlJ) + TV(O;Ld)m(o;w)

—
-/

- ‘ {(2r6a+ (1 + r’)r$b)t~
o

+ (ba + r6b)tW} dx + o(6p). (21)

From (10) and (16) it immediately follows that ( d/dx) (tW) = O,

i.e., t(.c; w)W(Z; w) - A-(d), where [cf. (18)]

K(w) = Wt(u)[t(o; w) – tm(d)]”t(o; ul). (22)

Therefore, one can write the increment of the functional as

~J(p)=-2~ ‘xRe Y
cd=um, n

{[2r6a + (1 + r2)6b]U + (ba + rtib)II} + o(bp).

(23)

If all the line parameters are nondispersive, one can rewrite (23) in

an inner product form

I
1

6J(p) = g~ . 6p dz+ O(&l)

o

= (9L , f5L) + (gc, m’)

+ (9R,8R) + ($7G,tiG) + 0(6P) (24)

where g(x) is the gradient of the objective functional. Using (4)

and (5) to express the increments 6a and 6b in (23) in terms of the

parameter increments, one can identify the gradients as

“JInax

g~(z) =–Y?e ~ .iu[.zi(w)]-’
“J=-r”,.

~{I{(OJ)(l - r(.z; w)) -(1 - T(Z; W))2LT(Z;W)},

(25)

(26)
‘JInax

gR(~) = ‘% ~ [zII(@)]-’
@=@m,r,

. {A-( Ld)(l - T(r;w)) -(1 - r(z; Ld))’u(z?; uJ)},

(27)
wm.x

g~(.r) =–Re ~ Zo(w)
t’l=wm, ”

. {A-( U)(l+T(Z; W)) + (1 +r’(a; ti))’U(lx w)}.

(28)

Note that if the scattering data for right-sided excitation, as well

as the the scattering data for left-sided excitation, are used in an
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inverse problem, ananalogous term should beadded in the definition

(12) of the objective functional. Consequently in that case the above

expressions for the gradients will be modified with additional terms

[which me similar to the righthand side expressions of (25)-(28)].

IV. NUMERICAL RECONSTRUCTION

A. Reconstruction of One Parameter from One-Sided Rejection Data

Example 1: In this numericaf example we consider a transmission

line with a piecewise constant conductance as shown by the solid

line in Fig. l(a) (the length of the line is 1 = 0.2 m). The other

three parameters are constant with values of L = 0.50 pH/m, C =

50 pF/m and R = O Q/m. The nonuniform line is terminated

at z = O with a uniform line with a characteristic impedance

ZO = 50 Q. The load end (at a = 0.2 m) is left open, i.e. ZL = co.

For a line with piecewise constant parameters, one can easily obtain

an explicit solution for the reflection coefficient by using recursively

the following formula [11]

for each subportion of the line, starting at z = 1. In (29)

7 = i(R+iJL)(G +jwc),

z.,., = /(R+ jwL)/(G -I- ~cJC)

d is the length of the subportion, and Zi. is the input impedance

of the subportion when its load impedance is zload. When Zi. IZ=O

is calculated, tie reflection coefficient can be obtained by r~ (w ) =

[Zi. I.=o - ZO]/[Zi. l~=o + Zo]. The calculated reflection coefficient

T~ (~) in the frequency band f 6 [10 MHz, 10 GHz] is shown

in Fig. 1(b), and will be used as the measured reflection data for

the inverse problem in this example. Since the input data r~ (u)

is calculated in a way that is different from the direct solver, the

numerical “marching back effect” can be avoided when solving the

inverse problem. 201 frequency points are used with a logarithmic

spacing in the microwave frequency band j c [10 MHz, 10 GHz],

and 401 grid-points are used in x E [0, Z]. In this example we

choose the weighting function for the reflection data as w.(w) =
l@w/wmax)2 , where ~~~~ = 27r .109 s–l (see the dotted line

in Fig. l(b); wt (w) s O, i.e., no transmission data is used). The

dashed line in Fig. 1(a) is the reconstruction after 150 iterations (the

starting guess is identically zero). To test the stability of the algorithm,

Gaussian noise with a standard deviation a = 0.05. max lr~ (w =

2m~) I is added on both the real and the imaginary parts of T~ (u)

[see the dashed lines in Fig. l(b)]. The dotted line in Fig. l(a) is

the corresponding reconstruction using the noisy reflection data. The

influence of noise is clearly visible around r = 0.16 m where

the parameter has a large discontinuity. Nevertheless, one sees from

this figure that the reconstruction algorithm is reasonably stable (the

reconstruction algorithm is more stable if the parameter has a smooth

continuous profile). One may reduce the sensitivity of the algorithm

to the noise in the reconstruction of a discontinuous parameter by

certain type of reguiarization (e.g., Tikhonov type [9]).

In the case of reconstructing one parameter, we found that any

of the parameters L, C, R and G can be successfully reconstructed

from one-sided reflection data. If two-sided reflection data are used,

the speed of convergence can be increased significantly. The inclu-

sion of transmission data does not give any improvement of the

reconstruction (see the Section IV-D below).

500 .. ......”..
~ 400 - – True profk
z -- Reconstruction
g 300 -

~ 200 .

. .
. .“

-2001
.,- I

o 0.05 0.1 0.15 0.2
Position x (m)

(a)

.
– Clean data ----%...

~ ...
-- With 5% noise %4.G
... Weight function ~ ...

.5 I

I 1

107 108 109 10’0
Frequencyf (Hz)

(b)

Fig. 1. (a) Reconstruction of the shunt conductance G(z), (b) The reflection

coefficient.

B. Reconstruction of Two Parameters from Two-Sided Reelection Data

Our numerical experiments indicate that using only one-sided

excitation we cannot obtain a good simultaneous reconstruction of

two parameters (the other two are assumed to be known) with

the optimization approach. However, when two-sided reflection data

are used, we can reconstruct two parameters simultaneously. The

reconstruction of a reactive parameter ( L or C) together with a

dissipative parameter (R or G) appears to be successful with a fast

convergence. Reconstruction of the two dissipative parameters, R and

G, is also successful. In the case of reconstructing the two reactive

parameters L and C, the reconstruction is successful (however, with

a slow convergence) if the nonuniform line is lossy. If R = G E O,

unsuccessful reconstruction readily occurs, which is consistent with

a time-domain numerical experiment given in [2].

Example 2-A Dispersive Case: The telegrapher’s equations (1)

are derived with the assumption that the wave in the transmission

line is (or approximately is) a TEM-wave, which is true only for the

case when the conductivity ac of the conductors is much higher than

the conductivity o of the material between the conductors. In such

a case, the series resistance R at high frequencies is proportional

to the real part of the surface impedance Zs, which is given by

Zs = (1 + j) /’ (PC is the permeability of the conductors,

see [10]). The imagin~ part of Z, is due to an internal inductance

L,. In view of thk physical background we consider a dkpersive

case for which R in the telegrapher’s equations (1) is replaced with

the following quantity

(30)

where Q(x) is proportional to ~~ [11]. consequently,

the expression (27) for the gradient g~(z) should be replaced with

the following expression for the gradient with respect to the function

Q(z)

*II I..

9Q(~) = –We ~ (1 +.j)&zo-l(Ld)
u=~rn,”

{~((uI)(l - 7fz;0J))-(1 - T(.C;IJ))2~r(X;W)}. (31)
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As a numerical example, we choose the length of the nonuniform

line as 1 = 0.2 m. The nonuniform dispersive line is always excited

from a 50 Q uniform LC-line and kept open at the other end (i.e.,

the load impedance is ZL = eo), for both cases of the left- and

right-sided reflection. The line parameters are chosen as shown by

the solid lines in Figs. 24. The number of gridpoints in z is 101,

and 30 frequency points are used over the frequency band f E

[50 MHz, 1.5 GHz] with a linear spacing. The measured reflection

coefficient r-~ (u) is calculated by solving the imbedding equation (8)

together with the boundary condition (9). We choose the starting guess

of the line parameters as L = 0.25 pH/m, C = 100 pF/nl, R = O,

and G = O.

The dashed lines in Fig. 2 are the simultaneous reconstruction of

L and R (at the frequency 500 MHz; note that the reconstruction

is carried out for the parameter pairs L(z) and Q(z), although

the reconstruct result is shown for L and R - Q@ in Fig. 2)

after 60 iterations. We have also compared the CPU times and the

accuracy between the reconstructions obtained with and without the

analytical gradients for this example. When an analytical gradient is

not available, one can calculate the gradient numerically through the

following series of step functions

{

1, xt_l < x < x,,
~’~(z) = O, otherwise

where x,, i = 1,2, ..., N, are the discretized positions. Assume

that F’(z) = Z, P,IJ, (T) (P(z) is a parameter to be reconstructed),

and the corresponding gradient g(z) = Z, g, ~, (z), then one can

calculate the coefficient g, numerically by a small perturbation as

shown at the bottom of the page where c is a small quantum. In

the present reconstruction algorithm, the computation time is mainly

consumed by calling the direct solver (i.e., solving the imbedding

equations for r and t), and the auxiliary direct solver (i.e., solving

the differential equations for the auxiliary functions) which takes a

roughly equal time as the direct solver. To calculate the gradient, one

has to call the direct solver N times when the numerical perturbation

is used, while using the present analytical expression one only needs

to call the direct solver and the auxiliary direct solver once. Therefore,

the ratio of the computation times for the gradient between with and

without the analytical expression is about 2/N. In fact the ratio of

the overall computation time for the reconstruction (if same number

of iterations is required) between with and without the analytical

gradients is about 2 + n, /nP N + 1 + n,, where nP is the number of

the parameters to be reconstructed (in a two-parameter reconstruction
case, np = 2), and n, is the average number of steps in the line search

within each iteration (rI, x 2 if an optimal line search program is

used). This has been verified numerically. When N = 101, and

the number of frequency points is 20, the time for calculating the

gradient is about six seconds when the analytical expressions are

used, but is ten minutes when a small numerical perturbation is

used (the programs are run on a Macintosh computer of MC68040

type). The overall computation time for the reconstruction (after 18

iterations) is about seven minutes when the analytical gradients are

used, while it takes three hours and twenty minutes when the gradients

are calculated by small numerical perturbation (with same number of

iterations; the reconstruction result is certainly worse than the one

obtained with the analytical gradients). This is consistent with the

observed value n, % 5.6 (we have not used an optimal line search

program in our reconstruction code; the difference in overall CPU

0.52

~o:

L

---

~ 0.46 – True profile
g 0.44 -- Reconstruction

~ 0.42 .

~ 0.4
038~~

o 0.05 0.1 0.15 0.2
Position x (m)

~ 350
3~ 300 .

~ 250
-- Reconstruction

z 200 .
0

% 150 -
%

.3
0

Eo 0.05 0.1 0.15 0.2
Position x (m)

Fig. 2. Simultaneous reconstruction of the inductance L and the resistance
R (dispersive).

times will be more significant if an optimal line search program is

used).

The simultaneous reconstruction of R (at the frequency 500 MHz)

and G using two-sided reflection data is shown by the dashed lines

in Fig. 3 after 100 iterations. The simultaneous reconstruction of L

and C is presented in Fig. 4 after 100 iterations. The dashed lines

in Fig. 4 give the simultaneous reconstruction when the nonuniform

line is lossy (with R and G as shown by the solid lines in Fig. 3),

while the dotted lines are the corresponding reconstruction when the

nonuniform line is lossless (i.e., R = G = O). The reconstruction

is reasonably good in the lossy case, but fails in the lossless case.

Numerical experiments indicated that in the case of reconstructing L

and C when the line is loss less, the failure lies in the reconstruction

of the wave-front velocity (L C’) – 1/2 (the reconstruction of the

characteristic impedance (L/C) 1/2 is still reliable).

C. Reconstruction of A40re Than Two Parameter

For simultaneous reconstruction of three parameters, we examined

the simultaneous reconstruction of G, R, and one of L and C. which

is expected to be the easiest case. Successful reconstruction using

two-sided reflection data can be achieved only when the starting

guess of the line parameters is close to their true parameter profiles

(otherwise the reconstruction readily fails). Numerical experiments

also show that using several different values for the load impedance

Z.L does not give any improvement in the reconstruction.

D. The Use of Transmission Data

The solution to the inverse problem of reconstructing any line

parameter using only transmission data is in general not unique. For

example, if the load impedance is equal to the impedance of the

terminated uniform line, i.e., ZL = ZO, it can be shown from two-

port theory that it is impossible to distinguish a parameter profile p(z)

from its center-image profile P([ – .r), when only transmission data is

used (i.e., the two profiles generate the same transmission data). Even

J((Po, Pl, . . .. PL+ e.... ,PN))– Y((PO, Pi,. ... PL, PN))P N))
92 =

f
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300

~ 250 . - True profile

z
g 200

-j :: .
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“o 0.05 0.1 0.15 0.2
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Fig. 3. Simultaneous recons@ction of theresistmce R(dispersive)md tie
conductance G.

0.52 \

$02 .“:..-d* - -

; 0.46 . “..

g 0.44 ~ ““” . . . . .’”””
. ...”

~ 0.42 . – True profile
~ 0.4 . -- Reconstrutilon (Iossy case)

-. fleconstrustio n(losslesscase) -
0.38

0 0.05 0.1 0.15 0.2
Position x (m)

o 0.05 0.1 0.15 0.2
Position x (m)

Fig.4. Simultmeous recons@ction of theinductmce Lmdthecapacitmce

c.

when the solution to the inverse problem is unique, the reconstruction

may not be achieved due to the existence of local minima,

In the previous subsections, we used only reflection data in the

numerical reconstruction, and we never came across a case in

which the reconstruction was trapped by a local minimum, i.e., it

appears that the objective functional, defined by (12) with wt a O,

is convex in a very large area centered at the true profile. One

may like to include the transmission data to make full use of the

available information. However, our numerical experiments show that

including the transmission data will introduce local minima, and thus

it is better not to use the transmission data at all in the present

optimization approach.

Embedding equations for the reflection and transmission coefficients

have been given, and the exact and explicit expressions for the

gradients have been derived. The reconstruction algorithm have

been tested with both clean and noisy data. Numerical results have

shown that any single parameter can be reconstructed from one-sided

reflection data, and various pairs of parameters can be reconstructed

simultaneously from two-sided reflection data. Several other aspects

have been discussed, including simttltaneous reconstruction of more

than two parameters, and the use of the transmission data.
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